English»Classic Information Retrieval»IR (language) models | searchivarius.org
log in | about 
 



Temporal Models
 

 


A Language Modeling Approach to Information Retrieval  Jay M Ponte, W Bruce Croft
A Language Modeling Approach to TREC  Djoerd Hiemstra, Wessel Kraaij
A Markov Random Field Model for Term Dependencies  Donald Metzler, W. Bruce Croft
A probabilistic justification for using tf×idf term weighting in information retrieval  Djoerd Hiemstra
A statistical interpretation of term specificity and its application in retrieval  Karen Spärck Jones
A Study of Smoothing Methods for Language Models Applied to Ad Hoc Information Retrieval  Chengxiang Zhai, John Lafferty
A Tutorial on Okapi BM25  E. Garcia
Biterm Language Models for Document Retrieval  Munirathnam Srikanth, Rohini Srihari
BM25F a multi-field extension of BM25  Hugo Zaragoza, Nick Craswell, Michael Taylor, Suchi Saria, Stephen Robertson
Exploiting Site-Level Information to Improve Web Search  Andrei Brodery, Evgeniy Gabrilovichy, Vanja Josifovskiy George Mavromatisy, Donald Metzlerz, Jane Wang
Global statistics in proximity weighting models  Craig Macdonald, Iadh Ounis
IDF revisited: A simple new derivation within the Robertson-Spärck Jones probabilistic model.  Lillian Lee
Improvements to BM25 and Language Models Examined  Andrew Trotman, Antti Puurula, Blake Burgess
Information retrieval as statistical translation  Adam Berger, John Laerty
On the specification of term values in automatic indexing  G. Salton, C.S. Yang - This is probably the earliest description of TFxIDF scheme!
Probabilistic Retrieval  C. J. "Keith" van Rijsbergen - Chapter 6 from the book "Information Retrieval".
Quantitative Evaluation of Passage Retrieval Algorithms for Question Answering  Stefanie Tellex, Boris Katz, Jimmy Lin, Aaron Fernandes, and Gregory Marton
Relevance-Based Language Models  V Lavrenko, WB Croft
Simple BM25 Extension to Multiple Weighted Fields  Stephen Robertson , Hugo Zaragoza , Michael Taylor
Some Simple Effective Approximations to the 2–Poisson Model for Probabilistic Weighted Retrieval  S.E. Robertson, S. Walker - The description of ranking functions BM11 and BM15 that can be considered prototypes of the Okapi BM25 function.
Statistical Language Models for Information Retrieval A Critical Review  ChengXiang Zhai
The Probabilistic Relevance Framework: BM25 and Beyond  Stephen Robertson and Hugo Zaragoza
Understanding Inverse Document Frequency: On theoretical arguments for IDF  Stephen Robertson
Understanding Inverted Document Frequency (a collection of links)  Stephen Robertson
Using BM25F for Semantic Search  Jose R. Perez Aguera, Javier Arroyo, Jane Greenberg
Using language models for information retrieval  Djoerd Hiemstra - A must-read PhD thesis on language models.
Utilizing passage-based language models for document retrieval  Michael Bendersky, Oren Kurland - Describes probabilistic model for proximity ranking.