A Support Vector Method for Optimizing Average Precision Yisong Yue, Thomas Finley, Filip Radlinski, Thorsten Joachims |
BagBoo: A Scalable Hybrid Bagging-the-Boosting Model Dmitry Pavlov, Alexey Gorodilov, Cliff Brun |
CS646: Information Retrieval Lecture 16: Learning-to-rank Jiepu Jiang |
Dynamic Bayesian Network Click Model for Web Search Ranking Olivier Chapelle, Ya Zhang |
Early Exit Optimizations for Additive Machine Learned Ranking Systems Barla Cambazoglu, Hugo Zaragoza, Olivier Chapelle, Jiang Chen, Ciya Liao, Zhaohui Zheng |
Efficient Algorithms for Ranking with SVMs O. Chapelle, S. S. Keerthi |
Future directions in learning to rank Olivier Chapelle, Yi Chang, Tie-Yan Liu |
Large Scale Learning to Rank D. Sculley |
Learning in a Pairwise Term-Term Proximity Framework for Information Retrieval Ronan Cummins, Colm O’Riordan |
Learning to rank Andrew Trotman |
Learning to Rank (ACML 2009 tutorial) Hang Li |
Learning to Rank for Information Retrieval (WWW2009 tutorial) - Learning to rank tutorial
|
Learning to Rank using Gradient Descent Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, Greg Hullende |
Learning to rank: from pairwise approach to listwise approach Z Cao, T Qin, TY Liu, MF Tsai, Hang Li |
Lerot: an Online Learning to Rank Framework. A. Schuth, K. Hofmann, S. Whiteson, M. de Rijke |
Optimizing Search Engines Using Clickthrough Data Thorsten Joachims |
SVM Tutorial: Classification, Regression, and Ranking Hwanjo Yu, Sungchul Kim |
Using gradient descent to optimize language modeling smoothing parameters Donald Metzler |
Web-Search Ranking with Initialized Gradient Boosted Regression Trees Ananth Mohan, Zheng Chen, Kilian Weinberge |
Winning The Transfer Learning Track of Yahoo! Andrey Gulin, Igor Kuralenok, Dmitry Pavlov |
Yahoo! Learning to Rank Challenge Overview Olivier Chapelle, Yi Chan |