English»Natural Language Processing and Computational Linguistics | searchivarius.org
log in | about 
 


Natural Language Processing (NLP) is a field of computer science concerned with automatic processing of the language. The modern NLP approaches heavily rely on statistics. Read more


Anti-spam techniques
 

Data Sets and Test Collections
Question Answering (QA), Catalogs/lists, Sentiment Analysis and Opinion Mining...

Discourse segmentation
 

Entity linking
 

Inference
 

Information Extraction
Temporal taggers, Knowledge Bases

Keyphrase detection
 

Language Models
Software

Language Models in IR
Temporal Models

Machine translation
Software

Metaphor detection
 

Morphology and Stemming
 

Natural language generation
 

NLP pipelines & annotation indexing
 

Paraphrasing & Textual Entailment
 

Parsing & Tagging
Named-entity Recognition (NER), Constituency and Dependency Parsers, Finite State Parsing...

Question Answering (QA)
Conversational agents (dialog systems and chatbots), Retrieval-based Question Answering

Semantics
 

Sentiment analysis
 

Slot filling
 

Software
Parsing & Tagging, Machine Translation, Extraction & Summarization...

Speech Recognition
End-to-end neural network systems, Tutorials, Acoustic modeling

Spell-checking
 

Topic modelling
 

Tutorials
 

Word Embeddings
 

Word Sense Disambiguation (WSD)
 

   


A Primer on Neural Network Models for Natural Language Processing  Yoav Goldberg
ACL Anthology   - A Digital Archive of Research Papers in Computational Linguistics
Awesome NLP  Keon Kim
Challenges of Chineese Language Processing  Ken Hu
Chinese Natural Language Processing Resources  
Deep learning resources for NLP  
Empiricism is not a matter of faith  Ted Pedersen
Gavagai Living Lexicon   - an online lexicon that gives you access to the knowledge our distributional semantic models gather about terms in language as it is used by people in every corner of the known world.
MatchZoo   - a toolkit for text matching. It was developed to facilitate the designing, comparing, and sharing of deep text matching models.
N-gram Statistics in English and Chinese: Similarities and Differences  Stewart Yang, Hongjun Zhu, Ariel Apostoli, Pei Cao
Natural Language Processing (Almost) from Scratch  Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen Koray Kavukcuoglu, Pavel Kuksa
Natural Language Understanding Wiki  
Resources for BioNLP  
Text Summarization Based on Thematic Representation of Texts  Loukachevitch N.
The Natural Language Processing Dictionary  Bill Wilson